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Resolution and sequent calculus are two well-known formal proof systems. Their

differences make them more suitable for mutually distinct tasks. Resolution and its

variants are very efficient for automated reasoning and are in fact the theoretical basis of

many theorem provers. However, being intentionally machine-oriented, the resolution

calculus is not as natural for human beings and the input problem needs to be

pre-processed to clause normal form. Sequent calculus, on the other hand, is a modular

formalism that is useful for analyzing meta-properties of various logics and is, therefore,

popular among proof-theorists. The input problem does not need to be pre-processed,

and proofs are more detailed. However, proofs also tend to be larger and more verbose.

When the worlds of proof theory and automated theorem proving meet, translations

between resolution and sequent calculus are often necessary. In this paper we compare

three translation methods and analyze their complexity.

Note to PxTP Reviewers

We intend to submit this paper to the special issue of Dale Miller’s 60th Birthday. As the

topic is within the scope of PxTP, we are submitting it for presentation only at PxTP.

A shorter version of this work, containing only the first two translations was presented

(without publication) in the first Women in Logic Workshop, in Reykjavik in June 2017.

Our work on the third translation is ongoing, but we expect that it will be finished by

the end of June.

1. Introduction

The representation of proofs as structured mathematical objects is in the core of proof

theory. Nevertheless, there is no single best representation. Depending on what one needs

proofs for, it makes sense to prefer one proof system over another. Two widely used

formalisms are the resolution calculus and the sequent calculus.

Variants of resolution are used in many contemporary theorem provers due to their

simplicity and efficiency in proof search. Simplicity is achieved by requiring the input
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problem to be transformed to clause normal form (i.e. conjunction of disjunctions of

literals that are either atomic formulas or negated atomic formulas), which allows the

calculus to have only two inference rules (resolution and factoring). Efficiency in proof

search is achieved by restricting instantiation through unification and by using various

refinements that restrict the application of the inference rules while retaining complete-

ness. As a result, proofs are relatively compact, but do not hold much information. To

begin with, a resolution refutation is a proof of the unsatisfiability of the negation of

the theorem. This means that the theorem is valid, but the refutation is not a direct

validity proof. Then, since the need for a clause normal form requires modification of the

conjecture in a number of ways (negations are pushed deeper, quantifiers are prenexified

and skolemized, and disjunctions are distributed over conjunctions (or new symbols are

introduced to avoid the exponential blow-up of the distribution)), it might be hard to

map each resolution step into some insight about the original problem statement.

Sequent calculus was introduced by Gentzen as a meta-calculus to reason about natural

deduction derivations and it continues to be used by most proof theorists for proof anal-

ysis and for meta-analysis of a logic’s properties. In principle, the calculus is composed

of two or more rules for each connective, which represent the semantics of the connective

when it appears on a goal or on a hypothesis (e.g. ∧ on a goal means one needs to prove

two subgoal, whereas ∧ on a hypothesis means one has two subhypotheses available to

use). The proximity to a semantic interpretation makes it suitable to show the calculus’

soundness and completeness. Proving the logic’s consistency is also straightforward (usu-

ally a corollary of cut elimination). Additionally, sequent calculi have been used as proof

systems for many different logics, as the formalism is modular and easily adaptable. The

existence of many rules for connectives in different contexts makes it possible to work

on a theorem without having to transform it. This characteristic also enables a better

mapping of human reasoning steps to the formal proof steps. Consequently, much more

information can be extracted from a sequent calculus proof. It is not a coincidence that

many proof assistants (where proofs are constructed through scripts written by humans)

are based on (higher-order) natural deduction and their basic tactic commands resemble

sequent calculus rules.

At times, translations between the two systems are necessary. Below we discuss three

situations with which we are familiarized.

Two methods for compressing sequent calculus proofs via the introduction of cuts were

proposed in [Paleo, 2010] (atomic cuts) and [Hetzl et al., 2014] (first order cuts). In order

to validate and evaluate the second method, the authors provided an implementation

and performed experiments. For this task a large database of sequent calculus proofs

was obtained by translating resolution proofs, although the paper provided no detailed

description of the translation used.

As automated theorem provers are complex pieces of software and therefore vulnerable

to bugs, the output of proofs is a common approach for providing a certificate that the

solution given by the prover is correct, even if the prover itself might not be completely

correct. This allows the user to trust the solution even without fully trusting the prover, if

he or she successfully checks the proof. The foundational proof certificate initiative [Miller,

2013] adheres to this approach and proposes a conceptual framework to uniformly check



Complexity of Translationsfrom Resolution to Sequent Calculus( Presentation-Only - Draft)3

proofs in a variety of calculi and formats. Due to its versatility, a sequent calculus was

chosen as the meta-calculus for this general proof-checking task and, in [Chihani et al.,

2016] in particular, an embedding of resolution into LKF (focused sequent calculus for

classical logic) was defined. Focusing is used to obtain a fine grained correspondence

between the sequent calculus proof and the resolution proof, but it is not absolutely

necessary. Leaving focusing aside, their embedding can be seen as a translation from

resolution to regular sequent calculus.

A third possible situation in which a translation from resolution to sequent calculus

proofs may arise is when proving soundness and completeness of one system with respect

to the other. This is the goal in [Hermant, 2010].

All translations proposed in the situations mentioned previously appeared as a side-

product of the main work, and thus not much attention has been paid to them. This

paper fills this gap by defining all these transformations precisely (and with a common

notation style) and analyzing their complexity.

2. Preliminaries

2.1. Resolution

Resolution is a calculus used for proving unsatisfiability of a formula in propositional or

first-order (classical) logic. It works on skolemized formulas in conjunctive normal form

(CNF) and it is used in most first-order automated theorem provers in some modified

and extended form. A formula F is unsatisfiable iff there exists a resolution refutation

of F (i.e. a derivation of the empty clause � from the CNF of F ) [Robinson, 1965]. Due

to the duality between unsatisfiability and validity in classical logic, one can show the

validity of a formula F by presenting a resolution refutation of ¬F .

Definition 1 (Resolution calculus). Let Ci be a disjunction of literals, A denote the

dual of a literal A and σ be the most general unifier (m.g.u.) of A and A′. The resolution

and factoring rules of the resolution calculus are:

C1 ∨A ∨ C2 D1 ∨A′ ∨D2

(C1 ∨ C2 ∨D1 ∨D2)σ
R

C1 ∨A ∨ C2 ∨A′ ∨ C3

(C1 ∨A ∨ C2 ∨ C3)σ
F

Example 1. The following is the specification of a family of unsatisfiable clause sets,

where a, b are constants and xi are variables:
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p1(x1) ∨ ... ∨ pn(xn)

q1 ∨ ¬p1(a)

¬q1 ∨ ¬p1(b)

q2 ∨ p1(x1) ∨ ¬p2(a)

¬q2 ∨ p1(x1) ∨ ¬p2(b)

...

qn ∨ p1(x1) ∨ ... ∨ pn−1(xn−1) ∨ ¬pn(a)

¬qn ∨ p1(x1) ∨ ... ∨ pn−1(xn−1) ∨ ¬pn(b)

We take the clause set when n = 2 for our example:

{p1(x1) ∨ p2(x2), q1 ∨ ¬p1(a), ¬q1 ∨ ¬p1(b), q2 ∨ p1(x1) ∨ ¬p2(a), ¬q2 ∨ p1(x1) ∨ ¬p2(b)}

The resolution refutation (with omitted parentheses) is:

ρ1
q1

ρ2
¬q1

�
R

Where ρ+1 is:

q1 ∨ ¬p1a
η1
p1x1

q1 R

And ρ1− is:

¬q1 ∨ ¬p1b
η1
p1x1

¬q1 R

And η1 is:

q2 ∨ p1x1 ∨ ¬p2a p1x1 ∨ p2x2
q2 ∨ p1x1 R,F

¬q2 ∨ p1x1 ∨ ¬p2b p1x1 ∨ p2x2
¬q2 ∨ p1x1 R,F

p1x1
R,F

Notice how the sub-derivation η1 of p1(x1) is used by both ρ+1 and ρ−1 . By representing

this directed acyclic graph (DAG) graphically, this can be seen more clearly:

¬q2 ∨ p1(x1) ∨ ¬p2(b)p1(x1) ∨ p2(x2)q2 ∨ p1(x1) ∨ ¬p2(a)

¬q1 ∨ p1(x1)q2 ∨ p1(x1)

¬q1 ∨ ¬p1(b)p1(x1)q1 ∨ ¬p1(a)

¬q1q1

�
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It is straightforward to generalize the example DAG proof shown above for n = 2 to

other values of n. For any n, the DAG proof is a tower of fixed width, height 2n, length

(i.e. number of nodes) O(n) and size (i.e. number of symbols) O(n2). If, however, the

DAG were expanded to a tree, its length and its size would be Ω(2n) (i.e. an exponential

blow up would occur), because the sub-derivations ηk (1 ≤ k ≤ n) would have to be

duplicated.

Because of the worst-case exponential blow-up that can happen if DAG proofs are ex-

panded to proof trees, as illustrated in Example 1, automated theorem provers invariably

represent resolution proofs as DAGs during and after proof search. Since the transforma-

tions analyzed here use resolution proofs produced by automated theorem provers, their

complexities will be parametrized by the length of resolution proofs as DAGs.

Moreover, the result of all transformations are sequent calculus proofs of the refuted

clause set, i.e. skolemized and in CNF. Therefore, we shall not account for any blow-up

on the input size due to normalization.

2.2. Sequent Calculus

Sequent calculus proof systems were proposed by Gentzen [Gentzen, 1969] in order to

show strong normalization of propositional logic. Their adaptability to many logics and

the uniformity with which one could prove the system’s consistency made the formalism

very popular among logicians.

A sequent is a structure Γ ` ∆, where Γ and ∆ are multi-sets of formulas and `
denotes the entailment relation. Its meaning is that the conjunction of the formulas in Γ

imply the disjunction of the formulas in ∆. A sequent calculus is a collection of inference

rules on sequents. In this paper we will use the sequent calculus LK for classical logic in

Figure 1.

Note that we are using the additive version of the binary rules. For certain transforma-

tions, a multiplicative version of the cut-rule is needed (i.e. one that splits the conclusion

contexts between the premises). In this case, we can safely assume the use of weakening,

since this rule is structure-preserving admissible. We formally show this property after

defining proof length†.

Example 2. We show a sequent calculus proof for the same example as before. Since all

transformations obtain proofs of the refuted clause set, we do the same, and show one of

the possible proofs. We abbreviate the set {∀x1.∀x2.(p1(x1)∨p2(x2)), q1∨¬p1(a), ¬q1∨
¬p1(b), ∀x1.(q2 ∨ p1(x1) ∨ ¬p2(a)), ∀x1.(¬q2 ∨ p1(x1) ∨ ¬p2(b))} as Γ, and omit the

parentheses.

† The dual argument also works: with multiplicative rules, contraction is structure-preserving admissi-

ble. Choosing additive rules maximizes the number of invertible rules and eases the definition of the
translation described in Section 4.
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Γ, A ` ∆, A
init

Γ ` ∆, P Γ, P ` ∆

Γ ` ∆
cut

Γ,⊥ ` ∆
⊥l

Γ ` ∆,> >r

Γ,¬P ` ∆, P

Γ,¬P ` ∆
¬l

Γ, P ` ∆,¬P
Γ ` ∆,¬P

¬r

P,Q, P ∧Q,Γ ` ∆

P ∧Q,Γ ` ∆
∧l

Γ ` ∆, P ∧Q,P Γ ` ∆, P ∧Q,Q
Γ ` ∆, P ∧Q

∧r

P, P ∨Q,Γ ` ∆ Q,P ∨Q,Γ ` ∆

P ∨Q,Γ ` ∆
∨l

Γ ` ∆, P ∨Q,P,Q
Γ ` ∆, P ∨Q

∨r

P → Q,Γ ` ∆, P Q, P → Q,Γ ` ∆

P → Q,Γ ` ∆
→l

Γ, P ` ∆, P → Q,Q

Γ ` ∆, P → Q
→r

P{x← α}, ∃x.P,Γ ` ∆

∃x.P,Γ ` ∆
∃l

Γ ` ∆, ∃x.P, P{x← t}
Γ ` ∆, ∃x.P ∃r

P{x← t}, ∀x.P,Γ ` ∆

∀x.P,Γ ` ∆
∀l

Γ ` ∆, ∀x.P, P{x← α}
Γ ` ∆, ∀x.P ∀r

P, P,Γ ` ∆

P,Γ ` ∆
cl

Γ ` ∆, P, P

Γ ` ∆, P
cr

Fig. 1. LK: Sequent calculus for classical logic (A is an atom, α is a variable not

contained in P , Γ or ∆, and t does not contain variables bound in P ).

Γ, q1 ` q1
init

Γ, q1,¬q1 `
¬l

Γ, q1, p1b ` p1b
init

Γ, q1,¬p1b, p1b `
¬l

Γ, q1,¬p1b, p2x2 `
Γ, q1,¬p1b, p1b ∨ p2x2 `

∨l

Γ, q1,¬p1b `
∀l

Γ, q1 `
∨l

Γ,¬p1(a) `
Γ `

∨l

2.3. Length measures

Proofs are measured by number of nodes. Although the size of first order terms are not

always negligible, all translations use the same term instantiation as the resolution proof

and, therefore, term size has no impact in comparing them.

Definition 2. The length |ψ| of a proof ψ is the number of nodes in the proof. In the

case of resolution, each node is a clause occurring in the DAG. In the case of sequent

calculus, each node is a sequent occurring in the proof tree.

Definition 3. The length |F | of a formula F is the number of logical connectives occur-

ring in F .
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Admissibility of weakening We can now prove that weakening is structure-preserving

admissible. The weakening rules are:

Γ ` ∆
P,Γ ` ∆

wl
Γ ` ∆

Γ ` ∆, P
wr

We show that, given a proof of the premise, we can obtain a proof of the conclusion

with exactly the same structure. This means that any use of the weakening rule during

a proof is harmless for proof complexity, i.e. nodes corresponding to weakening can be

ignored.

Lemma 1. Let ϕ be a proof of Γ ` ∆, then there exist proofs ϕl and ϕr of Γ, P ` ∆

and Γ ` ∆, P , respectively, such that |ϕ| = |ϕr| = |ϕl|.

Proof sketch The proof proceeds by structural induction on the proof tree. For the

base case, we simply observe that Γ, A ` ∆, A is still provable if Γ or ∆ has an extra

formula. For the inductive cases, on each rule we use the induction hypothesis to get an

extra formula on its premise and apply the rule normally.

3. First Translation: Resolutions as Cuts on the Resolved Literal

The translation described in this section is basically the one defined by the algorithm

from [Hetzl et al., 2013]. One notable difference is that we consider the problem to

be in CNF. Note that there is no complexity analysis in [Hetzl et al., 2013], and the

transformation is presented as a pseudo-code without a formal definition.

Let R be a resolution refutation of a set of clauses C∗1 , ..., C
∗
n with free variables. The

translation defined will transform R into an LK proof of the sequent C1, ..., Cn `, where

Ck is the universal closure of C∗k . This is achieved by using the resolution refutation as a

skeleton for the sequent calculus proof, where each clause is represented as a sequent and

each resolution step is interpreted as an atomic cut. In order to do this, we must ground

the resolution DAG (because the cut rule does not allow unification as the resolution

rule does). In turn, grounding requires expansion of the DAG into a tree, because a DAG

node that is used as a premise more than once may have to be distinctly instantiated

more than once.

Definition 4. Let R be a resolution refutation DAG, we denote by R̂ the representation

of R as a ground derivation tree in the resolution calculus (Definition 1). This is achieved

in two steps. First the DAG is transformed into a tree by duplicating sub-graphs with

more than one parent. Grounding is achieved by propagating the m.g.u. computed at

each rule application upwards, starting from the upper-most inferences.

Theorem 1. |R̂| = Ω(2|R|).

Definition 5. Let C be a clause ¬A1 ∨ . . .∨¬An ∨B1 ∨ . . .∨Bm where Ai (1 ≤ i ≤ n)

and Bk (1 ≤ k ≤ m) are atoms. Then seq(C) is the sequent A1, . . . , An ` B1, . . . , Bm.
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Definition 6. Let R be a resolution refutation DAG. We define seq(R) as the LK

proof obtained by taking R̂ and transforming each clause C into seq(C), and interpreting

resolution and factoring inferences as cut and contraction, respectively.

Observe that the cuts obtained from resolution inferences will be multiplicative. Nev-

ertheless, we can obtain additive cuts using the weakening lemma (Lemma 1).

Note seq(R) is an LK proof of the empty sequent · ` · from non-tautological axioms.

This structure is transformed into the desired proof of C1, ..., Cn ` via the operation of

context product, defined as follows.

In the definition below, the notation ◦ denotes merging of sequents, i.e. (Γ ` ∆) ◦ (Λ `
Π) is Γ,Λ ` ∆,Π.

Definition 7 (Context product). Let T be a sequent and ϕ be an LK derivation with

end-sequent S such that no free variable in T occurs as eigen-variable in ϕ. We define

the context product T ? ϕ (which yields a derivation of T ◦ S) inductively:

— If ϕ consists only of an axiom, then T ? ϕ is composed of one sequent: T ◦ S.
— If ϕ ends with a unary rule ξ:

ϕ′

S′

S
ξ

then T ? ϕ is defined as:

T ? ϕ′

T ◦ S′
T ◦ S ξ

Since T does not contain free variables which are eigen-variables of ϕ, the context

product is well defined also if ξ is ∀r or ∃l, although this case does not occur in our

application.
— If ϕ ends with a binary rule ξ:

ϕ1

S1

ϕ2

S2

S
ξ

then T ? ϕ is defined as:

T ? ϕ1

T ◦ S1

T ? ϕ2

T ◦ S2

T ◦ S ξ

Since T is part of the context, and all binary rules are additive in the calculus

considered, their formulas are copied to both premises. S1 and S2 differ from each

other at most on auxiliary formulas.

The result of (C1, ..., Cn `) ? seq(R) is a derivation of C1, ..., Cn ` from axioms

(C1, ..., Cn `) ◦ seq(C ′i), where C ′i is a ground instance of Ci (see first case of the in-

ductive definition). These axioms are tautological and can be proved easily.

Theorem 2. Let C1, ..., Cn be the universally closed formulas of a refutable clause set.

Let C ′i be a ground instance of one of those formulas. Then the sequent (C1, ..., Cn `
) ◦ seq(C ′i) has an LK proof ϕ such that |ϕ| = O(|Ci|).
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Proof. To see that the sequent is provable, it suffices to observe that all atoms occurring

in seq(C ′i) occur in the defined sequent in a dual position because of Ci on the left

(remember that in seq(C ′i) positive atoms are on the right and negative atoms are on the

left).

A proof of the sequent can be obtained by instantiating the variables properly and de-

composing Ci exhaustively, until its atomic parts. Since this formula has |Ci| connectives,

this will be the length of the proof.

All those steps are summarized in the definition of the transformation below.

Definition 8. Let R be a resolution refutation DAG of a clause set C∗1 , ..., C
∗
n. We

define TL(R) as the LK proof obtained from (C1, ..., Cn `)?seq(R), where each Ci is the

universal closure of C∗i and all axioms are proved (according to the proof of Theorem 2.

3.1. Complexity

Theorem 3. If R is a resolution refutation, then |TL(R)| = Ω(2|R|) in the worst case.

Proof. The first step of TL(R) consists of obtaining seq(R), which requires expanding

the DAG. According to Theorem 1, this operation may be cause an exponential blow-up

in the length of the proof.

4. Second Translation: Resolutions as Cuts on the Resolvent

The second translation of resolution to sequent calculus analyzed here is essentially the

one used in the foundational proof certificates (FPC) framework for checking resolution

proofs [Chihani et al., 2016], with only one minor difference. Whereas the FPC framework

uses a single-sided focused sequent calculus, here the two-sided calculus for classical logic

without focusing is used.
This transformation also translates resolution steps into cuts, but this time the cut

formula is the resolvent, instead of the resolved atom. The key idea is that each resolution
step deriving a clause C∗k from clauses C∗i and C∗j can be represented in sequent calculus
by a derivation of the following form

ϕk

∆ ` Ck

...
∆, Ck `

∆ ` cut

where Ch denotes the universal closure of clause C∗h for any h, ∆ is a set of formulas

containing Ci and Cj . ∆ ` Ck is provable (not surprisingly, because C∗k is derived from

C∗i and C∗j , which are in ∆ and resolution is sound and sequent calculus is complete),

and the construction of its proof ϕk is explained in the demonstration of Theorem 4.

On the right branch, the same construction is repeated for the next resolvent, and this

continues until the empty clause is reached, in which case the right branch can be closed

by the rule ⊥l. The translation procedure based on this idea is formally defined below.

Definition 9. Let R be a resolution refutation of the clause set C∗1 , ..., C
∗
n, with resol-

vents C∗n+1, ..., C
∗
n+m (possibly partially instantiated) and C∗n+m = ⊥. Letting Γ be the
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set of universally closed clauses C1, . . . , Cn, the sequence of proofs ψj (0 ≤ j < m) is
defined as :

ϕj+1

Γ, . . . , Cn+j ` Cn+j+1

ψj+1

Γ, . . . , Cn+j+1 `
Γ, . . . , Cn+j `

cut

with ψm being defined as:

Γ, Cn+1, ..., Cn+m `
⊥l

Finally, TR(R) is defined as the sequent calculus proof ψ0 of Γ `.

Theorem 4. Let C∗1 and C∗2 be two clauses that resolve to C∗3 , and let Ci denote the

universal closure of a clause C∗i . Then the sequent C1, C2 ` C3 has an LK proof ϕ such

that |ϕ| = O(|C1|+ |C2|+ |C3|).

Proof. The proof ϕ can be constructed in a bottom-up manner as follows. Begin by

instantiating the quantified variables of C3 and decomposing C3 until only atoms are

left. Then instantiate the variables of C1 and C2 using either the eigen-variable used for

C3 or terms used in the unifier of the resolution step that derives C∗3 from C∗1 and C∗2 .

Finally, apply ∨l to C1 and then to C2 exhaustively. Note that after C1 is completely

decomposed, all branches will be closed (the dual atom is available from C3), except the

one that contains the resolved literal. This is continued by the decomposition of C2 and

eventually the dual of the resolved atom will be in the sequent.

The total number of nodes in this proof is equal to the number of connectives and

universal quantifiers occurring in C1, C2 and C3. Therefore, |ϕ| = O(|C1|+ |C2|+ |C3|).

Due to the weakening lemma (Lemma 1), the sequent Γ, C1, C2 ` ∆, C3 is provable.

4.1. Complexity

In this translation, the resolution refutation DAG does not need to be expanded. Each

resolution step in the DAG is translated to a single cut in the sequent calculus proof.

Resolvents become universally closed clauses in the antecedent of the sequent in the right

branch of the proof being constructed, which remain in the context and can be reused as

many times as needed. Consequently, the length of the sequent calculus proof is linear

on the length of the DAG resolution refutation.

Theorem 5. Let R be a DAG resolution refutation of a set of clauses such that k is

the size of the biggest universally closed clause. Then |TR(R)| = O(|R| ∗ k) in the worst

case.

Proof. The DAG resolution refutation R contains at most O(|R|) resolution steps

(each node is either an input clause or the result of a resolution step). In the result of

TR(R), each of these steps will be a cut, whose left branch has a proof of size at most

3∗k (considering that k is the size of the biggest universally closed clause). Consequently,

|TR(R)| = O(|R| ∗ k).
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5. Third Translation: Resolutions as Axioms

The third translation defined and analyzed here is inspired by (and essentially the same

as) the translation used in the proof of relative soundness of Resolution Modulo (i.e.

Extended Narrowing and Resolution, more precisely) with respect to (cut-free) Sequent

Calculus Modulo in [Hermant, 2010] (which was itself inspired by works on the inverse

method) For the sake of simplicity, deduction modulo is left aside, as it is (like focusing,

in the case of the second translation) outside the scope and unnecessary to the goals of

this paper.

The key idea is to translate a resolution step between p ∨ q and ¬q ∨ r in the DAG

refutation into an axiom/init inference with conclusion Γ, q ` q in the corresponding

sequent calculus proof. This is done recursively, starting with the bottom-most node in

the DAG refutation and traversing the DAG upward, following any topological order.

For the bottom-most node (containing the empty clause), the resulting sequent calculus

proof is the trivial derivation of ⊥ ` using the ⊥l rule. For the n-th node ηn deriving

C∗n from D∗n and E∗n with resolved atom q, the resulting sequent calculus proof Sn is a

derivation of Γn `, where Γn = (Γn−1\{Cn}) ∪ {Dn and En}, and is obtained from Sn1

by replacing occurrences of Cn by Dn and En and adding a new branch starting with an

axiom having main formula q (cf. [Hermant, 2010], Lemma 14).

Note to PXTP reviewers: Work on this section is ongoing. A formal definition

of the translation will be included here. In the meanwhile, please refer to section 8

of Hermant’s paper (http://www.cri.ensmp.fr/people/hermant/docs/Resolution_

CutFree.pdf).

5.1. Complexity

Note to PXTP reviewers: We conjecture that there is a sequence of resolution proofs

Rn with length O(nk) for which the third translation results in cut-free sequent calculus

of length Ω(2n) whereas the first translation produces sequent calculus proofs with atomic

cuts of length O(nk). We plan to use the sequence of proofs shown in [Paleo, 2010] to

prove this conjecture.

6. Discussion

In the previous sections, we have surveyed and compared (from a complexity perspective)

three different translations from resolution to sequent calculus. The first one translates

resolution steps to cuts having (the grounding of) the resolved atom as cut-formula. The

second one translates resolution steps to cuts having (a universal closure of) the whole

resolvent as the cut-formula. And, finally, the third one translates resolution steps to

axiom/init inferences having the resolved atom as main formula.

To ease comparison, all three translations were defined here using the same resolu-

tion calculus and the same simple sequent calculus, with neither focusing nor deduction

modulo. This is the first time that the first translation is formally defined. And we hope

that the re-definition of the second and third translations using simpler calculi will make

http://www.cri.ensmp.fr/people/hermant/docs/Resolution_CutFree.pdf
http://www.cri.ensmp.fr/people/hermant/docs/Resolution_CutFree.pdf
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them more accessible to people working on applications where focusing and deduction

modulo are not essential.

Complexity-wise, the second translation is clearly superior to the other two. It avoids

the expansion and the worst-case exponential blow-up by using universally quantified

cuts. However, it is important to note that, if these cuts were eliminated (using Gentzen’s

cut-elimination procedure), duplications (leading to a worst-case exponential blow-up)

would happen whenever a cut inference has to be moved above a series of contractions and

universal quantification inferences that occur in the translated sequent calculus proofs

when a resolvent is used more than once in the DAG resolution refutation.

The other two translations have their advantages too, which become clear when we

look at the contexts in which they were developed. The first translation was developed in

the context of proof analysis, where there is an interest in extracting Herbrand sequents

or expansion trees and in generating potentially interesting new lemmas.For these goals,

a sequent calculus proof without quantified cuts is essential. For the third translation,

the goal was to prove relative soundness of a resolution calculus with deduction modulo.

A soundness proof under the assumption that cut is admissible was already known,

but cut-admissibility in sequent calculi with deduction modulo is tricky and depends on

the rewrite system. By providing a direct translation to a cut-free sequent calculus, the

third translation strengthened the soundness for the resolution calculus with deduction

modulo, making it independent of assumptions about the rewrite system.

Finally, we hope that the comparison pursued here will shed some additional light on

the debate of whether resolution steps are better seen as cuts or axioms. Two of the

three known translations see resolution steps as cuts, albeit as cuts of crucially different

kinds; the third translation sees resolutions as axioms and, in [Hermant, 2010], the view

of resolution steps as cuts is claimed to be confusing and misleading.

In our (subjective) view, the first translation is the most straightforward: the resulting

cut preserves as much as possible the local structure of the resolution step (i.e. exploiting

a natural analogy, a resolution with resolved atom p becomes a cut with cut-formula pσ

for some σ and with a context that is (an instantiation of) a super-set of the context

in the resolution step); however, the need for the substitution σ requires expansion of

the DAG and hence breaks the global structure of the proof. The preservation of the

local structure is a strong support for the resolution-as-cut view. On the other hand,

the breaking of the global structure is a clear (although unsurprising) indication that

the analogy between resolution steps and cuts is not perfect. This imperfection is closely

related to Hermant’s observation that resolution is forward-chaining, whereas sequent

calculus is backward-chaining. It is resolution’s forward-chaining nature that naturally

gives rise to non-tree DAG proofs.

The second translation also uses cuts for resolution steps, but in a way that does not

exploit the natural analogy between resolution steps and cuts. The whole sequent calculus

is used more as a meta calculus in this translation, with one premise of the cut storing

information that a whole resolvent is derivable from previously derived clauses and the

other premise continuing the procedure, now with that resolvent added to the derived

clauses. The global structure of the proof is preserved and a shorter polynomially bound

sequent calculus proof is obtained, at the cost of having more complex cut-formulas.
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In the third translation, a resolution step resolving a literal in a clause and its dual in

another clause becomes an axiom/init inference connecting these two literals. However,

it is important to note that, in fact, each resolution step may become several axiom/init

inferences. This one-to-many correspondence speaks against the resolution-as-axiom view

(although note that the first translation also suffers this problem to a lesser extent).

Moreover, from a complexity perspective, the third translation is the longest proofs,

possibly exponentially longer than those obtained with the first translation.

We conjecture that all three translations are essentially the same (for a suitable notion

of “essentially”), but in different stages of cut-elimination. If we start with the second

translation and partially eliminate the quantified cuts until only atomic cuts are left,

the resulting sequent calculus proof might be essentially the same as the proof obtained

through the first translation. Furthermore, if we then eliminate the atomic cuts com-

pletely, the result might be essentially the same as the proof obtained through the third

translation. In each of the cut-elimination steps (i.e. from quantified cuts to atomic cuts,

and then to no cuts), an exponential blow-up in proof length may occur.

Acknowledgements: Bruno would like to thank Gilles Dowek for pointing out, back

in 2010, that resolution steps could also be translated as axioms, right after a talk about

cut-introduction by resolution [Paleo, 2010] given by Bruno at INRIA-Paris to Gilles
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